
Interband pairing in multiorbital systems

Adriana Moreo, Maria Daghofer, Andrew Nicholson, and Elbio Dagotto
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966-1200, USA

and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032, USA
�Received 8 June 2009; revised manuscript received 27 July 2009; published 21 September 2009�

The discovery of high-Tc superconductivity in the pnictides, materials with a Fermi surface determined by
several bands, highlights the need to understand how superconductivity arises in multiband systems. In this
effort, using symmetry considerations and mean-field approximations, we discuss how strong hybridization
among orbitals may lead to both intraband and interband pairings, and we present calculations of the spectral
functions to guide the experimental search for this kind of state.
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I. INTRODUCTION

Iron-based high-Tc superconductors1–8 have a complex
Fermi surface that is determined by several bands, an effect
resulting from the hybridization of the 3d orbitals of iron.9–13

Band-structure calculations have shown that the bands that
define the two hole pockets around the � point have mostly
dxz and dyz characters while the two electron pockets around
the M point have dxz, dyz, and a smaller amount of dxy
contributions.9–14 For this reason it is important to under-
stand superconductivity in multiorbital systems in general
terms.

Among the first to address this complex problem several
years ago were Suhl et al.15 using a model consisting of two
orbitals, one s and one d, that did not hybridize with each
other. Thus, in this case each band was determined by one
single orbital. They showed that BCS pairing16 could occur
in each band and since in the most general case the electron-
phonon interaction would have different strengths for elec-
trons in the different bands, it was proposed that two differ-
ent superconducting gaps could arise. Almost 50 years were
needed to observe experimental evidence of this phenom-
enon. In 2001, superconductivity with Tc=39 K was ob-
served in MgB2.17 Despite the high Tc, it became clear that
the BCS mechanism18 was at play and two different super-
conducting gaps were observed.19–25 As shown in Ref. 18,
the Fermi surface �FS� is determined by two bands: the �
band formed by the pz orbitals of B and the � band consti-
tuted by a linear combination of the px and py B orbitals.
Although three orbitals determine the FS, it is interesting to
notice that only two different BCS gaps are observed. This
occurs because two of the three orbitals hybridize with each
other and determine one single band, which couples strongly
to the lattice phonons. This opens a large superconducting
gap on the � FS. The other orbital, pz, does not hybridize and
forms the � band that couples weakly to the lattice phonons
determining a second, smaller, superconducting gap at the FS
of the � band. Thus, the number of different gaps that can
arise in a multiorbital system is related to the degree of hy-
bridization among the orbitals. Also note that in this early
effort interband hopping of pairs of electrons belonging to
the same band was included but the possibility of interband
pairing, i.e., pairs formed by electrons belonging to two dif-
ferent bands, was not considered.

In this paper, the subject of superconductivity in multior-
bital systems is revisited, in particular, to shed light on the
possible symmetry of the pairing operator of the pnictides
superconductors. The motivation is that the pairing operators
that have been discussed the most thus far14,26–36 assume that
only intraband pairing should occur, namely, the two elec-
trons of the Cooper pair belong to the same band.37 However,
numerical simulations38 performed on a two-orbital
model39,40 for the pnictides favor an interorbital pairing op-
erator that, when transformed to the band representation, re-
sults not only in intraband pairing but it includes interband
pairing as well.40 For the pnictides, interband hopping of
pairs formed between electrons in the same band is often
denoted as “interband superconductivity.”37 The situation
discussed in the present paper is different and involves Coo-
per pairs where the two electrons come from two different
bands, which we will call “interband pairing.” Using sym-
metry arguments and mean-field approximations, the plausi-
bility and physical meaning of such an interband pairing in
multiorbital systems will be discussed.

Interband pairing has previously been addressed in the
context of quantum chromodynamics �QCD� and cold
atoms,41,42 heavy fermions,43 cuprates,44 and BCS
superconductivity.45 In the case of heavy fermions, it was
argued that interband pairing could occur if two Fermi sur-
faces arising from different bands are very close to one
other43 while in QCD and cold atoms it was presented as a
possibility for the case of sufficiently strong attractive pair-
ing interactions or for weaker attractions among particles
with very different masses.41,42 As it will be discussed for a
simple model in Sec. III, three different regimes, shown
schematically in Fig. 1, can result from a purely interband
pairing as a function of the strength of the pairing potential
g: �1� a normal regime where the ground state is not super-
conducting �namely, in purely interband pairing an infinitesi-
mal attraction does not lead to superconductivity�, �2� an
exotic superconducting “breached” regime where gaps open
at the normal Fermi surfaces while new Fermi surfaces de-
fining regions containing unpaired electrons are created, and
�3� a superconducting regime resembling BCS states, at large
attractive coupling.46

The paper is organized as follows. In Sec. II, the general
form of pairing operators in multiorbital systems will be pre-
sented, remarking how the symmetry is determined by the
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spatial and the orbital characteristics of the operator. The
interorbital pairing operator with B2g symmetry obtained nu-
merically in a two-orbital model for the pnictides is dis-
cussed, emphasizing that this operator presents a mixture of
intraband and interband pairing in the band representation. In
Sec. III, a simple toy model with pure interband pairing at-
traction is introduced. This simplified model is discussed in
order to illustrate the effects of interband pairing on observ-
ables, such as the occupation number and the spectral func-
tions A�k ,��. The stability of the interband-paired state is
also discussed. The occupation number, spectral functions,
and the stability of the B2g pairing state are the subject of
Sec. IV which is directly related to the physics of pnictides
while Sec. V is devoted to the conclusions.

II. PAIRING OPERATORS IN MULTIORBITAL MODELS

In single-orbital models, the symmetry of a spin-singlet
pairing state is completely determined by the properties of its
spatial form factor. More specifically, the pairing operator
will have the form

��k� = f�k��ck,↑c−k,↓ − ck,↓c−k,↑� , �1�

where ck,� destroys an electron with momentum k and spin
projection � and f�k� is the form factor that transforms ac-
cording to one of the irreducible representations of the crys-
tal’s symmetry group. Thus, f�k� determines the symmetry
of the operator. These form factors depend on the lattice
geometry and generally they may be very complex. How-
ever, in materials with short pair coherence lengths, such as
the high-Tc cuprates, the assumption that the two particles
that form the pair can be very close to one other is usually
made. The Cu-oxide planes in the cuprates have the symme-
try properties of the D4h group and the case f�k�=cos kx
−cos ky, which transforms according to the irreducible rep-
resentation B1g, provides the well-known d-wave symmetry
pairing.

In multiorbital systems, on the other hand, a spin-singlet
pairing operator will have both spatial and orbital degrees of
freedom and it will be given by

��k� = f�k���,��dk,�,↑d−k,�,↓ − dk,�,↓d−k,�,↑� , �2�

where dk,�,� destroys an electron with momentum k, in or-
bital �, and with spin projection �, f�k� is the spatial form
factor as indicated above, and ��,� is a matrix in the space
spanned by the orbitals involved. The dimension of � is equal

to the number of orbitals that are considered to be of rel-
evance. In this case, notice that the symmetry of the pairing
operator would in general be determined by the product of
the symmetry properties of f�k� and the symmetry of the
orbital contribution ��,�. Only if ��,� transforms according to
A1g, as the identity matrix does, the orbital contribution be-
comes trivial. Thus, this is the only case where f�k� fully
determines the symmetry of the pairing operator, as in the
single-orbital example.

The minimum model for the pnictides considers the two
orbitals dxz and dyz, which are strongly hybridized.38,39 All
the possible pairing operators, up to nearest-neighbor dis-
tance, that are allowed by the lattice and orbital symmetries
have been already calculated.47–52 Numerical simulations
performed on the two-orbital model suggest that the favored
pairing operator at intermediate couplings, where the state is
both magnetic and metallic,38,40 has symmetry B2g and is
given by Eq. �2� with f�k�= �cos kx+cos ky�, which trans-
forms according to A1g, and �=�1 which transforms accord-
ing to B2g �Ref. 50� �where �i are Pauli matrices�. Thus, the
nontrivial symmetry under rotations arises from the orbital
portion of the operator. This pairing operator has been stud-
ied at the mean-field level in Ref. 40. In the orbital represen-
tation, the Bogoliubov-de Gennes Hamiltonian matrix is
given by

HMF =�
	xx 	xy 0 �k

	xy 	yy �k 0

0 �k − 	xx − 	xy

�k 0 − 	xy − 	yy

� �3�

with

	xx = − 2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky − 
 ,

	yy = − 2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky − 
 ,

	xy = − 4t4 sin kx sin ky , �4�

and

�k = V�cos kx + cos ky� , �5�

where V=V0� with V0 being the strength of the pairing in-
teraction and � the mean-field parameter obtained by mini-
mizing the energy. Since the two orbitals are hybridized via
	xy, in the band representation the Hamiltonian matrix be-
comes

HMF� =�
�1 0 VB VA

0 �2 − VA VB

VB − VA − �2 0

VA VB 0 − �1

� , �6�

where VA and VB are given by

VA = 2u�k�v�k��k, �7�

VB = �v�k�2 − u�k�2��k, �8�

and u�k� and v�k� are the elements of the change-of-basis
matrix U given by

g

BCSbreachednormal

FIG. 1. Schematic representation of the three regimes that can
arise as a function of the strength g of an interband pairing attrac-
tion. The label “normal” denotes a nonsuperconducting state. The
case breached is an exotic regime with superconductivity and gaps,
coexisting with Fermi surfaces �or several nodes� and electrons that
do not pair. “BCS” is the large attraction region, where the ground
state resembles that of a BCS superconductor and all electrons par-
ticipate in the pairing.
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U =�
u�k� v�k� 0 0

v�k� − u�k� 0 0

0 0 v�k� u�k�
0 0 − u�k� v�k�

� �9�

with U−1=UT. Remember that VA and VB are functions of the
momentum k and u�k�2+v�k�2=1. Thus, it is clear that in
the band representation, in addition to the intraband pairing
given by VA, there is also interband pairing given by VB.
Among pairing operators compatible with the symmetry of
the model, the ones that do not lead to interband pairing not
only cannot mix orbitals but have to contain �=�0, i.e., the
identity matrix.40 One example for such an operator would
be the s� pairing.26,27,30,53

The discussion above describes general properties of hy-
bridized multiorbital systems. If the orbitals are hybridized,
but not related to one another by symmetry, there is no rea-
son to expect that the coupling between the electrons in each
orbital, and the interaction that produces the pairing, will
have the same strength for all the orbitals and lead to a unit
matrix in the orbital sector. Then, it is expected that inter-
band pairing will arise in general and, thus, it is important to
understand its consequences, providing the main motivation
for the present paper.

III. INTERBAND PAIRING

A. Generic properties

1. Model and noninteracting limit

To address qualitatively the issue of interband pairing,
postponing the matters of stability to Sec. III B, let us con-
sider the following two-band simplified model with inter-
band pairing:

Hk = �
�,�

���k�ck,�,�
† ck,�,� + V �

���

�ck,�,↑
† c−k,�,↓

† + H.c.� ,

�10�

where � ,� , =1 ,2 label two bands that are not hybridized, �
is the spin projection, and for simplicity

���k� =
− k2

2m�

+ C , �11�

which gives parabolic bands that are degenerate at k=0 with
energy C and with a chemical potential 
=0. This can be
considered as a crude representation of the two hole-pocket
bands around the � point in the pnictides but more impor-
tantly presents a simple toy model where the effects of inter-
band pairing can be studied. As before, the parameter V
=V0� is the product of an attractive potential V0 between
electrons in the two different bands and a mean-field param-
eter � determined by minimizing the total energy. The band
dispersion without the interaction is presented in the inset of
Fig. 2. The Bogoliubov-de Gennes matrix expressed in the
basis expanded by B12= �ck,1,↑

† ,c−k,2,↓ ,ck,2,↑
† ,c−k,1,↓� has the

form

H =�
�1 V 0 0

V − �2 0 0

0 0 �2 V

0 0 V − �1

� . �12�

This matrix can be diagonalized becoming

HD =�
EA 0 0 0

0 − EB 0 0

0 0 EB 0

0 0 0 − EA

� �13�

in the basis expanded by BAB= �
k,A,↑
† ,
−k,B,↓ ,
k,B,↑

† ,
−k,A,↓�
and the change-of-basis matrix is given by

U =�
uk vk 0 0

− vk uk 0 0

0 0 uk vk

0 0 − vk uk

� �14�

with uk
2 +vk

2 =1.
The four energy eigenvalues are

Ei�k� = � � ��1 − �2�
2

�	
 �1 + �2

2
�2

+ V2� , �15�

where the first positive �negative� sign corresponds to the
eigenvalues of the upper �lower� block, labeled EA and −EB
�EB and −EA� in Eq. �13� and in Fig. 2. The second sign
differentiates between the two solutions in each block. Fig-
ure 2 shows the eigenvalues for V=0 and 0.5. When V=0,
then EA=�2 and EB=�1, the two bands define two circular
Fermi surfaces with radius kF1 and kF2 where they cross the
chemical potential �
=0�. This is illustrated schematically in
Fig. 3.

Notice that number operators can be defined in the two
bases that are being considered here, i.e., B12 and BAB, which
of course become equivalent when V=0. Thus, in the basis
B12 the number operator is

k-4

-2

0

2

4

E

V=0.5
V=0

0 1 2 3
0

1

2

ε1
ε2

π0

2∆

2∆

E
A

E
B

-E
B

-E
A

FIG. 2. �Color online� Mean-field band dispersion for the model
defined by Eq. �10�, for the indicated values of V �defined in the
text� as a function of the momentum k=	kx

2+ky
2. The case shown is

for m1=1, m2=2, and C=2. Inset: noninteracting band dispersion
for the same parameters.
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n��k� = �
�

ck,�,�
† ck,�,�, �16�

while in basis BAB the number operator is �I=A ,B�,

nI�k� = �
�


k,I,�
† 
k,I,�. �17�

The total electronic occupation of the system is given by

n�k� = �
�

n��k� = �
I

nI�k� . �18�

Then, for V=0 we find that n�k�=0 for 
k
� 
kF1
, n�k�=2
for 
kF1
� 
k
� 
kF2
 since in this region n1�k�=nA�k�=2
while n2�k�=nB�k�=0, and finally n�k�=4 for 
k
� 
kF2

since both orbitals are totally filled with electrons. These
results are represented by the dashed lines in Fig. 4.

2. Weak attraction

In the nontrivial case of V different from zero, the bands
�EA and �EB result from the hybridization of the �1 and �2
bands due to V. It is interesting to observe that an internal
gap opens at the crossing of bands EA with −EB above the
chemical potential and between EB and −EA below the
chemical potential, as indicated with circles in Fig. 2 where
results for V=0.5 are displayed. These are very important
differences with respect to conventional BCS calculations
where all the action is restricted to the original Fermi sur-
faces: for multiorbital models, gaps can open in other por-
tions of the band structure as well.

While the �EA bands are separated by a gap, the bands
�EB still cross the chemical potential determining two Fermi
surfaces at kF1� �kF1 and at kF2� �kF2, even in this pairing
state �again, this is different from the one-orbital pairing
standard BCS ideas�. The new Fermi surfaces are shown
schematically in Fig. 3: the interior FS has expanded and the
exterior one has contracted. In fact, it will be shown below
that the effect of V is to try to equalize the two Fermi sur-

faces, as this pairing attraction grows in magnitude. Calcu-
lating n�k� we observe that n�k�=4vk

2 for k�kF1� and k
�kF2� , where vk is the element of the change-of-basis matrix
in Eq. �14�. This agrees with the BCS expression for n�k� but
it jumps discontinuously to n�k�=2 for kF1� �k�kF2� . Such a
result is shown by the solid lines in Fig. 4�a�. The jumps
indicate the existence of the two Fermi surfaces, which are
here present even in the paired state. Thus, some electrons in
the region in between the two Fermi surfaces may behave
like normal unpaired electrons.

A better understanding of the electronic behavior can be
achieved by studying the electronic density in the two bases
BAB and B12. We find that nA�k�=2vk

2, as shown in Fig. 4�c�,
which is the standard BCS behavior in agreement with the
fact that bands �EA are separated by a gap. Thus, all the
electrons in this band participate in the pairing and they do
not have a FS. On the other hand, it can be shown that
nB�k�=nA�k�=2vk

2 for k�kF1� and k�kF2� but for kF1� �k
�kF2� there is a discontinuous change in behavior to nB�k�
=uk

2 =1−vk
2 �Fig. 4�b��. Thus, the Fermi surfaces are deter-

mined by electrons in the band EB. However, note that in this
region nA�k� is an increasing function of 
k
 while nB�k� is a
decreasing function of 
k
 which satisfies nA�k�+nB�k�=2 for
all 
k
.

This behavior can be better understood by calculating the
�photoemission� spectral functions A�k ,��, which allow us
to obtain n�k�=�−�


=0A�k ,��d�. In the noninteracting case,
shown in Fig. 5�a�, the spectral function shows two peaks,
corresponding to the two bands �1 and �2, for each value of

k
. This is the expectation for free electrons in a noninter-
acting multiorbital system. The two noninteracting FSs are
located where each band passes across the chemical
potential.

When the pairing interaction becomes finite, the spectral
function develops four peaks for each value of 
k
 as it can
be observed in Fig. 5�b� for V=0.5. This is also the expected
result since the BCS interaction generates a “shadow” or
Bogoliubov band for each band present in the noninteracting
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kF1
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∆
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FIG. 3. �Color online� Schematic diagram of the FS determined
by the two parabolic bands of the simple model used in Sec. III. kF1

and kF2 indicate the Fermi momentum of the two bands when V
=0 while kF1� and kF2� indicate the position of the Fermi momenta
for the case of a finite but small pairing potential. The shaded rings
indicate the regions with width �1 and �2 in momentum space
where electrons can pair. The white region in between the rings
contains unpaired electrons in band 1.

0
1
2
3
4

n(
k) V=0

V=0.5

0

1

2

n B
(k

)

0

1

2

n A
(k

)

0

1

2

n 1(k
)

k
0

1

2

n 2(k
)

(a)

(b)

(c)

(d)

(e)

k
F1 k

F2

k
F1

k
F1

k
F2

k
F2

k’
F2

k’
F2

k’
F2

k’
F2k’

F1

k’
F1

k’
F1

k’
F1

FIG. 4. �Color online� Mean-field state population as a function
of momentum along the diagonal kx=ky for �a� the whole system;
�b� band B, �c� band A; �d� orbital 1; and �e� orbital 2 for the
indicated values of the pairing potential V, and m1=1, m2=2, and
C=2.
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system. For example, close to 
k
=0 the bands EA and EB
have almost all the spectral weight, given by uk

2 which is
very close to 1 in this region and follow a dispersion similar
to the noninteracting bands �1 and �2 while the bands −EA
and −EB appear with very small spectral weight given by
vk

2 =1−uk
2. The latter are the Bogoliubov or shadow bands.

These shadow bands appear above the chemical potential for
large values of 
k
, as expected.

But what happens in the intermediate region kF1� �k
�kF2� ? We see that the band EB crosses with −EB at kF1�
determining a FS. Most of the spectral weight below the
chemical potential belongs to the band −EB which contains
the unpaired electrons but the band −EA has appreciable
shadow spectral weight indicating that there are also some
paired electronic population as indicated in Figs. 4�b� and
4�c�. As k increases, spectral weight is transferred continu-
ously from −EB to −EA, behavior associated with the internal
gap opened by the pairing interaction, so that when k ap-
proaches kF2� most of the spectral weight below the chemical
potential is in −EA, paired electrons, and −EB, unpaired elec-
trons, has shadow spectral weight as seen in Figs. 4�b� and
4�c�. At k=kF2� the second FS is determined by the crossing
of �EB at the chemical potential indicated by the sudden
jump in nB. Thus, the unpaired electrons in this region coex-
ist with paired electrons and the spectral functions do not
resemble the noninteracting ones.

It is also illuminating to analyze what happens with n�k�
in the basis B12. While n1�k�=n2�k�=2vk

2 in the regions
where there are no unpaired electrons, we find discontinuities
associated with Fermi surfaces in the two distributions that
are given by n2�k�=0 and n1�k�=2 for kF1� �k�kF2� �Figs.
4�d� and 4�e��. This indicates that the pairing interaction V
has been able to promote some electrons from above to be-
low kF2 in orbital 2. Also, electrons have been transferred
from their original location in orbital 1, in the neighborhood

of kF2 and above kF1, to both orbitals 1 and 2 around kF1.
These are the electrons in 1 and 2 that have become paired
�the pairing is indicated by the shadowed circular regions in
Fig. 3�. But the interaction was not strong enough to provide
pairing partners to all the extra electrons originally in orbital
1 and, thus, they have been left unpaired in between the two
paired regions, as indicated in Fig. 3.

Thus, the interband pairing attraction creates pairs of elec-
trons belonging to different orbitals within an interval �kFi
around each of the two original Fermi surfaces. The width of
the pairing region increases with V. The pairing partners are
obtained by promoting electrons with momentum k�kF2 and
k�kF1 in both orbitals and by moving electrons from the
more populated to the less populated orbital. This creates the
conditions to pair electrons near both Fermi surfaces. The
electrons in band 1 that could not find promoted partners
remain unpaired. Whether this state is stable or not depends,
of course, on the balance between kinetic and pairing ener-
gies, which will be discussed in Sec. III B.

3. Strong attraction

As the interaction V increases further, the number of un-
paired electrons is reduced. This means that kF1� and kF2� be-
come closer to each other making the size of the intermediate
region with unpaired electrons in Fig. 3 smaller. Eventually,
the two momenta become the same kF1� =kF2� for V=0.71 and
for V�0.71 the region with unpaired electrons vanishes and
a full gap opens in the system whose physics now resembles
BCS, except for the fact that the pairs are constituted by
electrons from different orbitals. The electronic population of
the system in such a case, e.g., at V=1.0, is presented in Fig.
6 and the corresponding spectral functions are shown in Fig.
5�c�. It can be shown that now n1�k�=n2�k� for all values of
k and all the particles around the two noninteracting Fermi
surfaces now participate in the pairing. The spectral func-
tions show four peaks, i.e., Bogoliubov bands for all values
of k, as it can be observed in Fig. 5�c�.

(b)(a)

(c)

FIG. 5. �Color online� �a� Spectral functions A�k ,�� for the
noninteracting case, V=0. �b� Same as �a� but for V=0.5. Note that
there are still Fermi surfaces in this intermediate coupling case,
namely, gaps open far from the chemical potential but not at the
Fermi level. �c� Same as �a� but for V=1.0. The presence of a gap
for all the momenta shown is now clear.
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trates the “strong” pairing attraction regime where gaps open in the
original Fermi surface.
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Thus, notice that while band 1 contained more electrons
than band 2 for V=0 �see Figs. 6�b� and 6�c��, the interband
pairing mechanism transfers electrons from one band to the
other so that both bands have the same number of electrons
in the superconducting state. Consequently, the smaller FS
expands and the larger one shrinks. Then, when the pairing
becomes strong enough, the two Fermi surfaces become
equalized and no unpaired electrons remain. Whether this
situation can be achieved will depend on the strength of the
interaction and the energy balance, as discussed in Sec. III B.

If the two noninteracting Fermi surfaces are very close to
each other in momentum space, even relatively weak pairing
interaction could effectively be strong enough to make the
interband pairing resemble BCS pairing as in the case of
large V in the present example.

B. Stability of the interband-paired state

1. Case without intraband pairing

As discussed in Sec. I, the possibility of interband pairing
has been previously discussed in the context of QCD and
cold atomic matter. Similar effects on the FS as found in the
present study were described, although the physics was dif-
ferent because in the QCD context each band contained dif-
ferent kinds of particles and the pairing was thus not able to
promote particles from the majority to the minority band.41,42

The issue of stability was explored in the QCD framework
and it was found that a purely interband-paired state could be
stabilized for pairing attractions above a certain cutoff value,
which could become very small for a large difference be-
tween the masses of the two paired species.41,42

In the case of our model, however, we have found �see
below� that the purely interband-paired state only becomes
stable when the attraction is sufficiently strong that no un-
paired particles are left, i.e., when the two shaded regions
overlap and the unpaired region in Fig. 3 vanishes. This
means that, although the pairs would be formed by electrons
in different orbitals, the physics would be analogous to BCS.
A gap will be opened in the full Fermi surface of the simple
model studied here.

In order to study the issue of stability, let us assume that
the interaction term responsible for the interband attraction is
given by

Hattr =
1

N
�

k,k�,�

Vk,k�ck,�,↑
† c−k,−�,↓

† c−k�,−�,↓ck�,�,↑, �19�

where Vk,k�=−V0 and N is the number of sites. Performing
the standard mean-field approximation: bk�= �c−k�
,−�,↓ck�,�,↑� and bk

† = �ck,�,↑
† c−k,−�,↓

† � and making the substitu-

tion ck,�,↑
† c−k,−�,↓

† =bk
† + �ck,�,↑

† c−k,−�,↓
† −bk

†� �and an analogous
substitution for the product of annihilation operators�, the
mean-field results are obtained. As usual, the fluctuations
around the average given by �ck,�,↑

† c−k,−�,↓
† −bk

†� are assumed

to be small. Defining �= 1
N�kbk= 1

N�kbk
† we obtain the fol-

lowing mean-field Hamiltonian:

HMF = �
�,�

���k�ck,�,�
† ck,�,� − V0� �

k,���

�ck,�,↑
† c−k,�,↓

† + H.c.�

+ 2V0�2N . �20�

Equation �12� can be recovered by defining −V0�=V and
disregarding the constant last term of Eq. �20�. We can cal-
culate the total energy EMF for Eq. �20� as a function of V
=V0�. If for a given V�0 the energy has a minimum, this
indicates that the interband-paired state is stable. Note that
having a term linear in � in Eq. �20� is not sufficient to
conclude the appearance of a superconducting state at small
� since the sign of the coefficient of the linear term can
change sign with V. A similar situation occurs for the mag-
netic state of undoped pnictides: a finite Hubbard U must be
reached to stabilize the “striped” state.46 Returning to super-
conductivity, there are two regions of interest: �i� 0�V
�0.71, which corresponds to the case in which two Fermi
surfaces are present in the paired state and �ii� V�0.71,
which corresponds to the fully gapped case. In Fig. 7�a�,
EMF /N vs V is shown for different values of V0. It can be
observed that a second minimum develops for V0�2 and it
becomes stable for V0�3. The minimum always occurs for
V�0.71 which means that it corresponds to the case in
which there are no unpaired electrons in the system. The
results shown in the figure are robust in the sense that
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FIG. 7. �Color online� �a� Mean-field energy Eq. �20� per site vs
V=V0� for different values of V0. The case V=0.71 is indicated
with dashed lines: it separates the regions corresponding to nodal
and nodeless states. �b� Mean-field energy �Eq. �20�� per site with
intraband pairing with strength V0 /2 vs V=V0� for different values
of V0.
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changes in the values of m1, m2 or the chemical potential
were not found to stabilize the state with unpaired electrons.
Thus, in this respect an attraction that is only interband can
only lead to a stable superconducting state in the strong at-
traction region.

2. Stability when both interband and intraband pairings coexist

The results of the previous paragraphs may seem negative
with respect to the relevance of the “intermediate” state with
simultaneous coexistence of pairing and Fermi surfaces.
However, as pointed out in Sec. II, most of the pairing op-
erators allowed by the lattice and orbital symmetries in the
pnictides are characterized by a mixture of both intraband
and interband pairing. Thus, it is important to consider such
a situation in our simple model as well. In the case of the B2g
pairing operator, Eqs. �6�–�8� indicate that the pairing is
purely interband only for kx=0 or � and ky =0 or � because
VA=0 along these lines. Thus, let us now consider our simple
model in a Brillouin zone �BZ� defined by −��kx ,ky , ��
and with the addition of intraband pairing with intensity
V0 /2 that is vanishing for kx=0 or � and ky =0 or �, i.e., the
pairing is purely interband only along those directions. The
energy bands now behave as in Fig. 2 only along �0,0�
− �� ,0� and �0,0�− �0,�� while the dispersion along any
other direction is shown in Fig. 8 for V=0 and 0.5.

Performing the mean-field approximation similarly as ex-
plained above, we have found that the superconducting state
now becomes stable on both sides of the original critical
value V=0.71. Figure 7�b� shows that the pairing state is
stabilized for V0�2.5 but the value of � where the minimum
is located is such that V�0.71 and, thus, two nodes will be
present along the x and y axes. Increasing the value of V0,
the minimum eventually occurs for V�0.71. For these larger
values of V0, there would consequently be no nodes.

Then, in this section it has been shown using a simple
model that the interorbital paired state can become stable if
the attraction V0 is sufficiently strong. In this case, it is the
nodeless case that is stable even for purely interband attrac-
tion. In addition, the very interesting phase with coexisting
nodes and unpaired electrons in the majority band also re-
quires intraband pairing to be stable, with strength similar to
that of the interband, at least in parts of the BZ.

IV. INTERORBITAL B2g PAIRING OPERATOR

In the previous section, a simple model was presented,
both with exclusively interband pairing and with both inter-
band and intraband pairings, and it was found that the intra-
band pairing stabilizes the state with a mixture of supercon-
ductivity and metallicity. As mentioned in Sec. I, it is
expected that in the most general cases the pairing operators
allowed by the symmetry of the lattice and of the orbitals
will, in the band representation, have both intraorbital and
interorbital pairings. Thus, now we will present and discuss,
at the mean-field level, the occupation number and the spec-
tral functions for the pairing operator obtained from the nu-
merical study of the two-orbital model for the superconduct-
ing state of the pnictides introduced in Sec. II.

A. Noninteracting limit

Let us start with the noninteracting case in which V=0.
The spectral functions along high-symmetry directions in
momentum space are presented in Fig. 9�a� and, as expected,
they reproduce the noninteracting band dispersion. We also
show the total occupation number n�k� along the same direc-
tions �dashed lines in Fig. 10�a��, as well as the occupation
number for each orbital nx�k� �dashed lines in panel �b�� and
ny�k� �dashed lines in panel �c�� and the orbital occupation in
the quadrant of the first BZ defined by 0�kx, ky �� in Fig.
11�a�. It is clear that the electronlike and holelike Fermi sur-
faces are determined by an admixture of the two orbitals.

On the other hand, in the band representation, band 1
determines the electron pockets while band 2 forms the hole
pockets as it can be seen from the behavior of n1�k� and
n2�k� �indicated by the dashed lines in panels �d� and �e� of
Fig. 10� and by the light �orange� and dark �red� surfaces in
Fig. 11�b� where the FS is also indicated. It is clear that the
electronic occupation of band 1 is smaller than the electronic
population of band 2 so that unpaired electrons would be
expected to belong predominantly to band 1, as in the simple
model of Sec. III. It is interesting to notice that in the orbital
representation, on the other hand, the electrons are equally
distributed among the xz and yz 3d orbitals.

B. Nonzero pairing

Let us discuss what occurs when the pairing interaction
becomes nonzero. To simplify the discussion, define the fol-
lowing points in momentum space: X= �� ,0�, Y = �0,��, �

k
x
=k

y
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0
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E

V=0
V=0.5

0 π

FIG. 8. �Color online� Mean-field band dispersion for the model
given by Eq. �10� �along the main diagonal� for the indicated values
of the pairing potential V, with the addition of an intraband pairing
with strength V0 /2, as described in the text.

(b)(a)

FIG. 9. �Color online� �a� One-particle spectral function for the
two-orbital model Eq. �3�, with vanishing pairing interaction V=0.
Parameters: t1=1.3, t2=−1, t3= t4−0.85, and 
=1.54. �b� Same as
�a� but for V=0.5.
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= �0,0�, and M = �� ,��. As remarked in Ref. 40, the B2g
pairing operator always has nodes along the X-Y direction
because the spatial form factor f�k�=cos kx+cos ky vanishes
along that line. But, as soon as V is finite, a gap opens along
the �-M direction �notice that along this direction the pairing
is purely intraband since in Eq. �6�, v2=u2 and thus VB=0 in
Eq. �8��. Along �-X, �-Y, X-M, and Y-M nodes associated to
the different number of electrons in band 1 and band 2 re-
main �notice that along these directions the pairing is purely
interband since VA=0 because Eqs. �3� and �6� become iden-
tical to one other�. When the pairing interaction V becomes
strong enough to make n1�k�=n2�k�, as described in the sim-
plified model presented in Sec. III A 3, these nodes vanish.
Along any other direction in the BZ a mixture of intraorbital
and interorbital pairing will be present.40

Let us first consider a relatively small pairing V=0.5. In
Fig. 10�a�, n�k� is presented along high-symmetry directions.
Along Y-X there is no pairing and, thus, n�k� is unchanged
from the noninteracting case shown in the figure with dashed
lines. Along X-M, where only interband pairing occurs, no

effects are observed at the electron pocket FS but a rounding
in n�k� indicating pairing is observed at the hole-pocket FS.
However, n�k� shows discontinuities at two points indicating
the existence of nodes. Along the diagonal direction M-�,
where all the pairing is intraband, it is found that n�k� ex-
hibits standard BCS behavior at both hole Fermi surfaces
indicating the opening of gaps. Finally, along �-X it can be
observed as a rounding of n�k� at the hole Fermi surfaces,
indicating pairing, and a sharp jump at the electron FS.

We can further analyze the pairing in the orbital represen-
tation. The occupation number for the orbitals xz and yz is
shown in Figs. 10�b� and 10�c�. Along Y-X, where the pair-
ing is zero, we observe how the FS for the electron pocket at
Y �X� is totally determined by electrons in the orbital xz �yz�
and how the population of each orbital varies smoothly be-
tween the two Fermi surfaces, always satisfying nx�k�
+ny�k�=2. From X to M, nx�k�=ny�k� for kFh�k�M indi-
cating that the electrons at the hole-pocket FS are paired in a
wide region around it but the pairing region is very narrow
around the electron pocket because the pairing is reduced by
the small value of f�k�. Along the diagonal, i.e., from M to
�, standard intraband pairing occurs at both hole Fermi sur-
faces and, thus, nx�k�=ny�k� while from � to X nx�k�
=ny�k� for ��k�kFh indicating pairing around the hole FS
and almost no pairing occurs at the electron pocket FS. The
behavior nx�k�=ny�k�= n�k�

2 for all k for which pairing occurs
and ni�k� unchanged from the noninteracting value for all
other k was observed for all values of V. For this reason,
figures for ni�k� in the orbital representation will not be
shown for the additional values of V discussed below.

The population of the different bands is presented in Figs.
10�d� and 10�e�. The Fermi surfaces along Y-X are clearly
determined only by band 1, which is the band that forms the
electron pockets. It can also be observed that there is almost
negligible pairing at the electron FS along X-M but there is
clear interband pairing at the hole FS. This is an indication
that, due to the spatial variation in the pairing interaction, the
attraction is much stronger at the hole pockets than at the
electrons pockets. Also notice that at the hole-pocket FS the
pairing is interband and thus n1�k�=n2�k� but this does not
happen along the diagonal direction M-� where intraband
pairing occurs and there are more paired electrons belonging
to band 2 than to band 1. Along the direction X-� again we
observed a stronger pairing effect at the hole FS than at the
electron one.

C. Spectral functions A(k ,�)

In this section, we discuss the form of the spectral func-
tions A�k ,��, which can be measured in angular resolved
photoemission spectroscopy �ARPES� experiments, for weak
to strong interorbital pairing.

1. Weak attractive coupling

The spectral function for V=0.5 is depicted in Fig. 9�b�.
As discussed above, the interorbital B2g operator leads to
intraband coupling along the �-M line, where one conse-
quently clearly sees the hole pockets to be gapped. Along
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FIG. 10. �Color online� �a� Total occupation number n�k� for the
two-orbital model Eq. �3� with pairing interaction V=0.5 �continu-
ous lines� and V=0 �dashed lines�. Parameters: t1=1.3, t2=−1, t3
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FIG. 11. �Color online� �a� Occupation number n�k� for the
two-orbital model Eq. �3� without pairing interaction for the orbital
dxz �orange/light� and the orbital dyz �red/dark�. The “floor” indi-
cates the FS in red. �b� Same as �a� but for band 1 �orange/light� and
band 2 �red/dark�.
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�-X, the pairing is purely interband and one finds a Fermi
surface on both the hole and electron pockets, indicating that
V=0.5 corresponds to the breached phase in Fig. 1. However,
the spectral weight determining the hole-pocket node is weak
and might thus be missed in the analysis of experiments. The
node on the electron pocket FS, on the other hand, is robust
and it should be observed, if present. The same occurs along
X-M; the signal for the node at the electron pocket FS should
be robust while the one at the hole-pocket FS will be weak.

2. Intermediate attractive coupling

As the pairing interaction increases, the nodes resulting
from the interband pairing should get closer to each other, as
discussed in Sec. III. Figures 12�a�–12�c� show n�k� for V
=3 along high-symmetry directions in the band representa-
tion. One can see that there are still unpaired electrons and
V=3 consequently falls into the breached region schemati-
cally represented in Fig. 1.

It is interesting to notice that while kFh� �kFh, on the other
hand kFe� �kFe indicating that the reconstruction around the
hole pockets is much larger than around the electron pockets.
This can also be observed in Fig. 12�b�, where we observe
unpaired electrons along X-M but not along �-X. The effect
occurs in part due to the smaller value of f�k� at the electron
pockets but also because, due to the band dispersions, the
price in kinetic energy for interband pairing is much larger at
the electron pockets than at the hole pockets. The spectral
density in Fig. 13�a� further illustrates that the pairing inter-
action is more effective along �-X than along X-M. Only
shadow spectral weight crosses the chemical potential along
�-X while strong spectral weight crosses the chemical poten-
tial twice along X-M and leads to two nodes.

3. Strong attractive coupling

Finally, let us consider a much stronger value of the pair-
ing, such as V=6, in the BCS region of Fig. 1, for which the
only nodes observed are those along X-Y, due to the vanish-
ing of the pairing operator. Figures 12�d�–12�f� show that
n�k� is discontinuous only along X-Y while it is smooth
along all the other directions indicating pairing. Note that
n1�k�=n2�k� along �-X and X-M where interband pairing
occurs while along �-M, ni�k� is smooth but different for
each band because the pairing is intraband. The behavior of
the spectral functions displayed in Fig. 13�b� shows that
spectral weight only crosses the chemical potential along the
X-Y direction. In this situation, in the folded BZ, nodes
should occur only at the points where the two electron pock-
ets cross with each other, as indicated in Ref. 40. In the rest
of the BZ an anisotropic gap will be observed.

D. Stability of the B2g pairing state

Finally, let us discuss the important issue of the stability
of the B2g pairing state. It will be assumed, following the
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FIG. 13. �Color online� �a� Spectral density for the two-orbital
model Eq. �3� for a pairing strength V=3. The rest of the parameters
are as in Fig. 9; �b� same as �a� but for strong pairing V=6.
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notation in Appendix A of Ref. 40 that Eq. �3� has arisen
from an interorbital attractive potential of the form

Vk,k� = V��cos kx + cos ky��cos kx� + cos ky�� �21�

and that

�†�k� = ��k� = V���cos kx + cos ky� , �22�

where

��k� = − �
k�

Vk,k��bk�� ,

�†�k� = − �
k�

Vk,k��bk�
† � . �23�

V in Eq. �5� is then given by V=V�� and the mean-field
energy EMF can be calculated for a given V� as a function of
V. The results are presented in Fig. 14. In this figure, a mini-
mum for V�0 can be seen for V��3. This indicates that if
the pairing attraction overcomes a finite threshold level, the
mean-field results presented here with V�0.2 will be stable.
Thus, if the attraction exists, both multinodal (breached) and
states with nodes only along X-Y (strong coupling) are
possible.

V. CONCLUSIONS

Summarizing, in this paper the possibility of intraband
and interband pairings in multiorbital systems has been dis-
cussed. While interband pairing has previously been studied
in the context of QCD, cold atoms,41,42 heavy fermions,43

cuprates,44 and BCS superconductivity,45 most of the pairing
operators proposed for the pnictides are based on the premise
that the pairing has to be purely intraband, i.e., both electrons
in the Cooper pairs belonging to the same band, compatible
with the assumption that in these superconductors all the
action must occur at the Fermi surfaces. However, symmetry
considerations show that in models for the pnictides interor-
bital pairing is allowed with the two members of the Cooper
pair belonging to different bands.50 This is not surprising
since the bands that determine the electron and hole Fermi
surfaces consist of hybridized orbitals. These interorbital

pairing operators give rise to not only intraband but also
interband pairing when the band representation is used. In
addition, numerical calculations in a minimal two-orbital
model for the pnictides favor one of these nontrivial pairing
operators.38,40 As a consequence, a clear discussion of the
role of interband pairing is necessary.

The explicit calculations shown here of the electronic oc-
cupation in the orbital and the band representations, as well
as the calculation of the spectral functions showing the dis-
tribution of Bogoliubov bands, may offer guidance in the
interpretation of ARPES experiments. In particular, most
ARPES measurements determine the FS in the normal state
and study the opening of the superconducting gap by moni-
toring A�kF ,�� as they lower the temperature.54–58 Notice
that this approach would miss the nodes associated with the
breached phase since in the superconducting state a gap
would be observed in A�kF ,�� while the node would be de-
tected in A�kF� ,��. Thus, experimentalists should investigate
the possibility of nodes at points in momentum space that do
not belong to the normal-state FS and they must keep in
mind that some of the nodes may be determined by shadow
bands with very small spectral weight.

The most recent experimental results with the polarization
dependence of the ARPES spectra for BaFe1.85Co0.15As2 pro-
vided the allowed contribution of each of the five 3d orbitals
to the electron and hole Fermi surfaces.59 While discrepan-
cies with proposed four- and five-orbital models are re-
marked in that publication, it is interesting to observe that the
minimal two-orbital model addressed here does not contra-
dict the ARPES findings if we disregard the additional �
hole-pocket FS that they present, which is reasonable be-
cause it has dx2−y2 character, an orbital not included in the
minimal model considered here. In fact, along their �-M
direction, which corresponds to our �-X, our first hole FS is
purely dxz as it is their �� hole FS; our second hole FS,
which arises upon folding our extended FS along X-Y is
purely dyz, as it is their �� hole FS, and our electron FS is
purely dyz as it is their 
 electron FS. Our second electron FS
�obtained upon folding� has a purely dxz character while their
electron FS 
� /�� appears to be mostly dyz and dxy but with
some amounts of dxz as well. Along the diagonal direction
�-X, which corresponds to our �-M, the two hole Fermi
surfaces are a symmetric admixture of dxz and dyz, exactly as
in the two-orbital model.60 Thus, these similarities between
the experimental results and the band composition of the
simple two-orbital model offer encouragement toward ex-
ploring whether the main physics of the pnictides can be
captured with such a minimum number of degrees of
freedom.

We have also mentioned in the text that the symmetry of
the lattice and of the orbitals introduce constraints on the
possible pairing operators. In general, a purely intraband
pairing, such as the proposed s� state,26,27,30,53 would occur
only if the coupling of the electrons with the source of the
attraction is identical for all orbitals. Considering the differ-
ent spatial orientations of the orbitals, it is not obvious that
this should be the case since, as discussed in Sec. I, phonons
couple differently to electrons in the pz and px boron orbitals
in the case of MgB2. Thus, if indeed the coupling results to
be the same for all 3d orbitals we could use this fact to
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elucidate the pairing mechanism; but, if this is not the case,
we would expect some degree of interband pairing, at least in
some regions of the Brillouin zone and, thus, it is important
to study the experimental and theoretical consequences of
such a possibility.
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